
IJDCST @Oct, Issue- V-2, I-7, SW-09
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

55 www.ijdcst.com

Distributed Load Rebalancing by using Cloud Computing
 1B.Trinadh ,2Ravi Mathey

1M,Tech Student- Vidya Jyothi Institute of Technology. Aziz nagar Hyderabad,

2 Associate Professor and HOD of CSE Department, Vidya Jyothi Institute of Technology, Hyderabad,

Abstract: A novel load-balancing algorithm to deal

with the load rebalancing problem in very large scale

dynamic and distributed file systems in clouds.

Distributed file systems are key building blocks for

cloud computing applications based on the Map

Reduce programming paradigm. In such file systems,

nodes simultaneously serve computing and storage

functions. Files can also be dynamically created,

deleted, and appended. This results in load imbalance

in a distributed file system; that is, the file chunks are

not distributed as uniformly as possible among the

nodes. Emerging distributed file systems in

production systems strongly depend on a central node

for chunk reallocation. This dependence is clearly

inadequate in a large-scale, failure-prone

environment because the central load balancer is put

under considerable workload that is linearly scaled

with the system size, and may thus become the

performance bottleneck and the single point of

failure. In this paper, a fully distributed load

rebalancing algorithm is presented to cope with the

load imbalance problem. Additionally, we aim to

reduce network traffic or movement cost caused by

rebalancing the loads of nodes as much as possible to

maximize the network bandwidth available to normal

applications. Moreover, as failure is the norm, nodes

are newly added to sustain the overall system

performance resulting in the heterogeneity of nodes.

Exploiting capable nodes to improve the system

performance is thus demanded.

 Keyword--Load balance, Distributed file systems,

Clouds, AES Algorithm

INTRODUCTION

Cloud computing (or cloud for short) is a compelling

technology. In clouds, clients can dynamically

allocate their resources on-demand without

sophisticated deployment and management of

resources. Key enabling technologies for clouds

include the Map Reduce programming paradigm [1],

distributed file systems (e.g., [3], [4]), virtualization

(e.g., [4], [5]), and so forth. These techniques

emphasize scalability, so clouds (e.g., [6]) can be

large in scale, and comprising entities can arbitrarily

fail and join while maintaining system reliability.

Distributed file systems are key building blocks for

cloud computing applications based on the Map

Reduce programming paradigm. In such file systems,

nodes simultaneously serve computing and storage

functions; a file is partitioned into a NUMBER of

chunks allocated in distinct nodes so that Map

Reduce tasks can be performed in parallel over the

nodes. For example, consider a word count

application that counts the number of distinct words

and the frequency of each unique word in a large file.

In such an application, a cloud partitions the file into

a large number of disjointed and fixed-size pieces (or

file chunks) and assigns them to different cloud

storage nodes (i.e., chunk servers). Each storage node

(or node for short) then calculates the frequency of

each unique word by scanning and parsing its local

file chunks. In this paper, the load rebalancing

problem in distributed file systems specialized for

large-scale, dynamic and data-intensive clouds. (The

terms “rebalance” and “balance” is interchangeable in

this paper.)Such a large-scale cloud has hundreds or

thousands of nodes (and may reach tens of

Thousands in the future). Our objective is to allocate

the chunks of files as uniformly as possible among

the nodes such that no node manages an excessive

number of chunks. Additionally, we aim to reduce

network traffic (or movement cost) caused by

rebalancing the loads of nodes as much as possible to

maximize the network bandwidth available to normal

applications. Moreover, as failure is the norm, nodes

are newly added to sustain the overall system

performance [3], [4], resulting in the heterogeneity of

nodes.

IJDCST @Oct, Issue- V-2, I-7, SW-09
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

56 www.ijdcst.com

OUR PROPOSAL

The chunk servers in our proposal are organized as a

DHT network; that is, each chunk server implements

a DHT protocol such as Chord [18] or Pastry [19]. A

file in the system is partitioned into a number of

fixed-size chunks, and “each “chunk has a unique

chunk handle (or chunk identifier) named with a

globally known hash function such as SHA1 [24].

The hash function returns a unique identifier for a

given file’s pathname string and a chunk index. For

example, the identifiers of the first and third chunks

of file “/user/tom/tmp/a.log” arerespectivelySHA1.

Each chunk server also has a unique ID. We

represent the IDs of the chunk servers in V by 1n, 2n,

3n, · · · , nn; for short, denote the n chunk servers as

1, 2, 3, · · · , n. Unless otherwise clearly indicated,

we denote the successor of chunk server i as chunk

server i + 1 and the successor of chunk server n as

chunk server 1. In a typical DHT, a chunk server i

hosts the file chunks whose handles are within (i−1n ,

in], except for chunk server n, which manages the

chunks whose handles are in (nn, 1n].To discover a

file chunk, the DHT lookup operation is performed.

In most DHTs, the average number of nodes visited

for a lookup is O(log n) [18], [19] if each chunk

server maintains log2 n neighbors, that is, nodes i +

2k mod n fork = 0, 1, 2, · · , log2 n − 1. Among the

log2 n neighbors, the one i+20 is the successor of i.

To look up a file with l chunks lookups are issued.

DHTs are used in our proposal for the following

reasons:

A. The chunk servers self-configure and self-heal in

our proposal because of their arrivals, departures, and

failures, simplifying the system provisioning and

management.

B. if a node leaves, then its locally hosted chunks are

reliably migrated to its successor;

C. if a node joins, then it allocates the chunks whose

IDs immediately precede the joining node from its

successor to manage.

Our proposal heavily depends on the node arrival and

departure operations to migrate file chunks among

nodes.

ARCHITECTURE:

PHYSICAL NETWORK LOCALITY

A DHT network is an overlay on the application

level. The logical proximity abstraction derived from

the DHT does not necessarily match the physical

proximity information in reality. That means a

message traveling between two neighbors in a DHT

overlay may travel a long physical distance through

several physical network links. In the load balancing

algorithm, a light node i may rejoin as a successor of

a remote heavy node j. Then, the requested chunks

migrated from j to i need to traverse several physical

network links, thus generating considerable network

traffic and consuming significant network resources

(i.e., the buffers in the switches on a communication

path for transmitting a file chunk from a source node

to a destination node). We improve our proposal by

exploiting physical network locality. Basically,

instead of collecting a single vector per algorithmic

round, each light node i gathers NV vectors.

IJDCST @Oct, Issue- V-2, I-7, SW-09
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

57 www.ijdcst.com

Chunk creation

A file is partitioned into a number of chunks

allocated in distinct nodes so that Map Reduce Tasks

can be performed in parallel over the nodes. The load

of a node is typically proportional to the number of

file chunks the node possesses. Because the files in a

cloud can be arbitrarily created, deleted, and

appended, and nodes can be upgraded, replaced and

added in the file system, the file chunks are not

distributed as uniformly as possible among the nodes.

Our objective is to allocate the chunks of files as

uniformly as possible among the nodes such that no

node manages an excessive number of chunks.

DHT formulation

The storage nodes are structured as a

network based on distributed hash tables (DHTs),

e.g., discovering a file chunk can simply refer to

rapid key lookup in DHTs, given that a unique handle

(or identifier) is assigned to each file chunk. DHTs

enable nodes to self-organize and - Repair while

constantly offering lookup functionality in node

dynamism, simplifying the system provision and

management. The chunk servers in our proposal are

organized as a DHT network. Typical DHTs

guarantee that if a node leaves, then its locally hosted

chunks are reliably migrated to its successor; if a

node joins, then it allocates the chunks whose IDs

immediately precede the joining node from its

successor to manage.

PROPOSED SYSTEM

The proposed enhance load rebalancing algorithm

first evaluates whether the loads are light (under

loaded) or heavy (overloaded) in each sub servers

without global knowledge. All heavy loads are

changed in to light nodes. F are downloading or

uploading with the aid of the centralized system.

Load equalization technique used to distribute the F

uniformly into sub servers.

The advantage of the technique is to reduce latency,

isolated overload, and great utilization of resource

provident outcome. DHTs enable nodes to self-

organize and repair while constantly offering lookup

functionality in node dynamism, simplifying the

system provision and management. Our algorithm is

compared against a centralized approach in a

production system which uniformly distributes across

sub servers.

Load balancing Algorithm:

 Load balancing algorithms help you easily

fine-tune how traffic is distributed across

connections. Each deployment has a unique setup,

and Peplink's enterprise grade load balancing features

can fulfil all of your special requirements. Create

your own rule with the following algorithms and you

can sit back and enjoy the high performance routing

that Peplink brings to you. In our proposed algorithm,

IJDCST @Oct, Issue- V-2, I-7, SW-09
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

58 www.ijdcst.com

each chunk server node I first estimate whether it is

under loaded (light) or overloaded (heavy) without

global knowledge. A node is light if the number of

chunks it hosts is smaller than the threshold. Load

statuses of a sample of randomly selected nodes.

Specifically, each node contacts a number of

randomly selected nodes in the system and builds a

vector denoted by V. A vector consists of entries, and

each entry contains the ID, network address and load

status of a randomly selected node.

Weighted Balance:

Assign more traffic to a faster link or less traffic to a

connection with a bandwidth cap. Set a weight on the

scale for each connection and outgoing traffic will be

proportionally distributed according to the specified

ratio. (e.g. 1:3:2)

 The time complexity of the above algorithm can be

reduced if each light node can know which heavy

node it needs to request chunks beforehand, and then

all light nodes can balance their loads in parallel.

Thus, we extend the algorithm by pairing the top-k1

under loaded nodes with the top-k2 overloaded

nodes.

Security

Cloud computing is an emerging technology that is

still unclear to many security problems. Ensuring the

security of stored data in cloud servers is one of the

most challenging issues in such environments. The

main aim of this project is to use the cryptography

concepts in cloud computing communications and to

increase the security of encrypted data in cloud

servers with the least consumption of time and cost at

the both of encryption and decryption Processes. To

make sure the security of data, our proposed a

method of providing security by implementing AES

algorithm, the encrypted data that will be stored in

the sub servers. The key send to user can access

original data through this key. Otherwise user can get

only cipher text without key.

AES Algorithm:

AES is based on a design principle known as a

Substitution permutation network. It is fast in both

software and hardware. Unlike its predecessor, DES,

AES does not use a Feistel network.AES has a fixed

block size of 128 bits and a key size of 128, 192, or

256 bits, whereas Rijndael can be specified with

block and key sizes in any multiple of 32 bits, with a

minimum of 128 bits. The block size has a maximum

of 256 bits, but the key size has no theoretical

maximum.AES operates on a 4×4 column-major

order matrix of bytes, termed the state (versions of

Rijndael with a larger block size have additional

columns in the state). Most AES calculations are

done in a special finite field. The AES cipher is

specified as a number of repetitions of transformation

rounds that convert the input plaintext into the final

output of cipher text. Each round consists of several

processing steps, including one that depends on the

encryption key. A set of reverse rounds are applied to

transform cipher text back into the original plaintext

using the same encryption key.

CONCLUSION

In this paper. Our proposal strives to balance

the loads of nodes and reduce the demanded

movement cost as much as possible, while taking

advantage of physical network locality and node

heterogeneity. In the absence of representative real

workloads (i.e., the distributions of file chunks in a

large scale storage system) in the public domain, we

have investigated the performance of our proposal

and compared it against competing algorithms

through synthesized Probabilistic distributions of file

chunks. Emerging distributed file systems in

production systems strongly depend on a central node

for chunk reallocation. This dependence is clearly

inadequate in a large-scale, failure-prone

IJDCST @Oct, Issue- V-2, I-7, SW-09
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

59 www.ijdcst.com

environment because the central load balancer is put

under considerable workload that is linearly scaled

with the system size, and may thus become the

performance bottleneck and the single point of

failure. Our algorithm is compared against a

centralized approach in a production system and a

competing distributed solution presented in the

literature. The simulation results indicate that our

proposal is comparable with the existing centralized

approach and considerably outperforms the prior

distributed algorithm in terms of load imbalance

factor, movement cost, and algorithmic overhea a

fully distributed load rebalancing algorithm is

presented to cope with the load imbalance problem.

FUTURE WORK

 In future we have increase efficiency and

effectiveness of our design is further validated by

analytical models and a real implementation with a

small-scale cluster environment. Highly desirable to

improve the network efficiency by reducing each

user’s download time. In contrast to the commonly-

held practice focusing on the notion of average

capacity, we have shown that both the spatial

heterogeneity and the temporal correlation sin the

service capacity can significantly increase the

average download time of the users in the network,

even when the average capacity of the network

remains the same.

REFERENCES:

1. J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processingon Large Clusters,” in

Proc. 6th Symp. Operating System Design and

Implementation (OSDI’04), Dec. 2004, pp. 137–150.

2.S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

Google File System,” in Proc. 19th ACM Symp.

Operating Systems Principles (SOSP’03), Oct. 2003,

pp. 29–43.

3.Heiser J. What you need to know about cloud

computing security and compliance, Gartner,

Research, ID Number: G00168345, 2009.

4. Seccombe A.., Hutton A, Meisel A, Windel A,

Mohammed A, Licciardi A, (2009). Security

guidance for critical areas of focus in cloud

computing, v2.1. Cloud Security Alliance, 25 p.

5.Mell P, Grance T (2011) The NIST definition of

Cloud Computing. NIST, Special Publication 800–

145, Gaithersburg, MD.

6. J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters,” in

Proc. 6th Symp,Operating System Design and

Implementation (OSDI‟04), Dec. 2004, pp. 137–150

7. J. Byers, J. Considine, and M. Mitzenmacher,

Simple load balancing for distributed hash tables, in

Proceedings of IPTPS, Berkeley, CA, Feb. 2003.

8.Ram Prasad Padhy (107CS046), PGoutam Prasad

Rao (107CS039).”Load balancing in cloud

computing system” Department of Computer Science

and Engineering National Institute of Technology,

Rourkela Rourkela-769 008, Orissa, India May,

2011.

 9.M. Randles, D. Lamb, and A. Taleb-Bendiab, ―A

Comparative Study into Distributed Load Balancing

Algorithms for Cloud Computing‖, Proceedings of

24th IEEE International Conference on Advanced

Information Networking and Applications

Workshops, Perth, Australia, April 2010, pages 551-

556.

10. S.Penmatsa and T.Chronopoulos, Game-theoretic

static load balancing for distributed systems, Journal

of Parallel and Distributed Computing, vol.71, no.4,

pp.537-555, Apr. 2011.

